## Mobile Communications

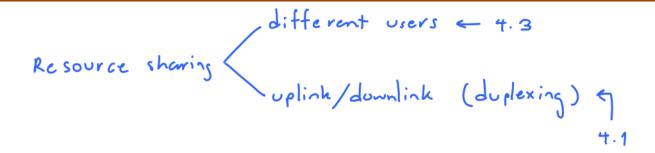
ECS 455

#### Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Part II

**Office Hours:** 


BKD 3601-7

Wednesday 15:30-16:30

Friday 9:30-10:30

### ECS455: Chapter 4

#### Multiple Access



Dr. Prapun Suksompong prapun.com/ecs455

**Office Hours:** 

BKD 3601-7

Wednesday 15:30-16:30

Friday 9:30-10:30

| Parameter                   | Fixed WiMAX                                                                 | Mobile WiMAX                                                               | HSPA                                                        | 1x EV-DO<br>Rev A                             | Wi-Fi                                                        |                                |  |
|-----------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------|--|
| Standards                   | IEEE 802.16-<br>2004                                                        | IEEE 802.16e-<br>2005                                                      | 3GPP Release 6                                              | 3GPP2                                         | IEEE 802.11a/g/n                                             |                                |  |
| Peak down<br>link data rate | 9.4Mbps in<br>3.5MHz with 3:1<br>DL-to-UL ratio<br>TDD; 6.1Mbps<br>with 1:1 | 46Mbps <sup>a</sup> with<br>3:1 DL- to-UL<br>ratio TDD;<br>32Mbps with 1:1 | 14.4Mbps using<br>all 15 codes;<br>7.2Mbps with<br>10 codes | 3.1Mbps;<br>Rev. B will<br>support<br>4.9Mbps | 54 Mbps <sup>b</sup> shared<br>using 802.11a/g;<br>more than | Of interest<br>for<br>consumer |  |
| Peak uplink<br>data rate    | 3.3Mbps in<br>3.5MHz using 3:1<br>DL-to-UL ratio;<br>6.5Mbps with 1:1       | 7Mbps in<br>10MHz using 3:1<br>DL-to-UL ratio;<br>4Mbps using 1:1          | 1.4Mbps ini-<br>tially; 5.8Mbps<br>later                    | 1.8Mbps                                       | 100Mbps peak<br>layer 2 through-<br>put using 802.11n        |                                |  |
| Bandwidth                   | 3.5MHz and<br>7MHz in 3.5GHz<br>band; 10MHz in<br>5.8GHz band               | 3.5MHz, 7MHz,<br>5MHz, 10MHz,<br>and 8.75MHz<br>initially                  | 5MHz                                                        | 1.25MHz                                       | 20MHz for<br>802.11a/g;<br>20/40MHz for<br>802.11n           |                                |  |
| Modulation                  | QPSK, 16 QAM,<br>64 QAM                                                     | QPSK, 16 QAM,<br>64 QAM                                                    | QPSK,<br>16 QAM                                             | QPSK,<br>8 PSK,<br>16 QAM                     | BPSK, QPSK,<br>16 QAM, — D<br>64 QAM                         | Pisital commu.                 |  |
| Multiplexing                | TDM                                                                         | TDM/OFDMA                                                                  | TDM/CDMA                                                    | TDM/<br>CDMA                                  | CSMA                                                         | ]                              |  |
| Duplexing                   | TDD, FDD                                                                    | TDD initially                                                              | FDD                                                         | FDD                                           | TDD                                                          |                                |  |
| Frequency                   | 3.5GHz and<br>5.8GHz initially                                              | 2.3GHz, 2.5GHz,<br>and 3.5GHz<br>initially                                 | 800/900/1,800/<br>1,900/<br>2,100MHz                        | 800/900/<br>1,800/<br>1,900MHz                | 2.4GHz, 5GHz                                                 | -                              |  |
| Coverage<br>(typical)       | 3–5 miles                                                                   | < 2 miles                                                                  | 1–3 miles                                                   | 1–3 miles                                     | < 100 ft indoors;<br>< 1000 ft<br>outdoors                   |                                |  |
| Mobility                    | Not applicable                                                              | Mid                                                                        | High                                                        | High                                          | Low                                                          |                                |  |

## ECS455: Chapter 4

Multiple Access

4.1 TDD and FDD

Dr. Prapun Suksompong prapun.com/ecs455

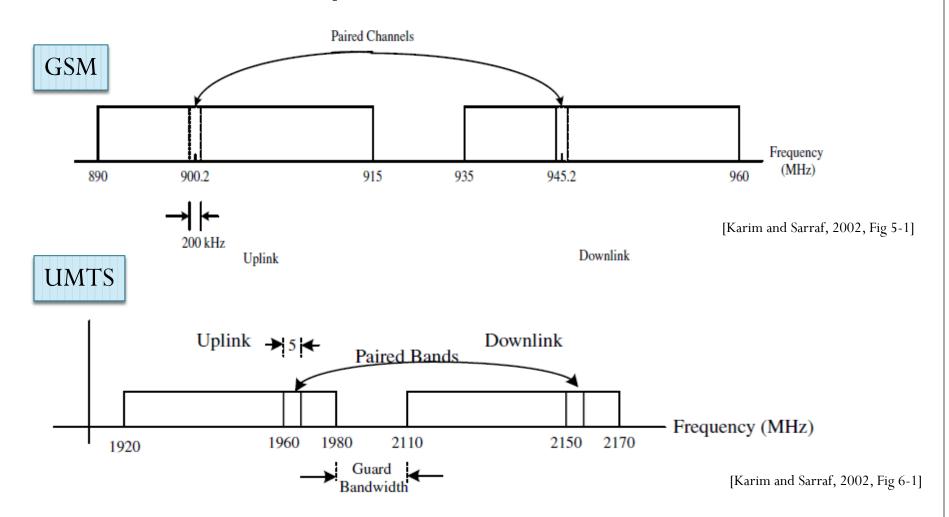
**Office Hours:** 

BKD 3601-7

Tuesday 9:30-10:30

Friday 14:00-16:00

#### Duplexing

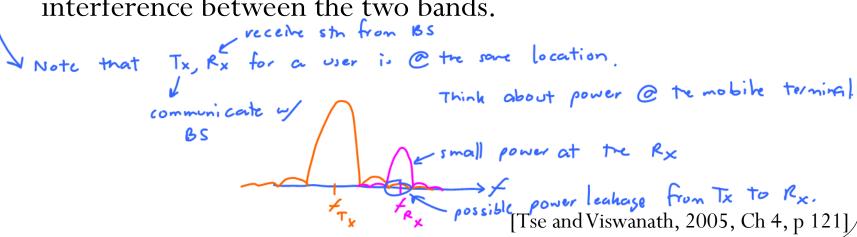

- Allow the subscriber to send "simultaneously" information to the base station while receiving information from the base station.
  - Talk and listen simultaneously.
- Definitions:
  - Forward channel or downlink (DL) is used for communication from the infrastructure to the users/stations
  - Reverse channel or uplink (UL) is used for communication from users/stations back to the infrastructure.
- Two techniques
  - Frequency division duplexing (FDD)
  - Time division duplexing (TDD)

#### Frequency Division Duplexing (FDD)

- Provide *two distinct bands* of frequencies (simplex channels) for every user.
- The **forward band** provides traffic from the base station to the mobile.
- The **reverse band** provides traffic from the mobile to the base station.
- Any *duplex* channel actually consists of two *simplex* channels (a forward and reverse).
- Most commercial cellular systems are based on FDD.

#### FDD Examples

a: why the two frequencies in a paired channel are so far apart??




#### Time Division Duplexing (TDD)

- The UL and DL data are transmitted on the **same carrier frequency** at different times. (Taking turns)
  - Use time instead of frequency to provide both forward and reverse links.
  - Each *duplex* channel has both a **forward time slot** and a **reverse time slot**.
- If the *time separation* between the forward and reverse lime slot is *small*, then the transmission and reception of data *appears* simultaneous to the users at both the subscriber unit and on the base station side.
- Used in Bluetooth and Mobile WiMAX
- Each transceiver operates as either a transmitter or receiver on the same frequency

#### Problems of FDD

- Each transceiver simultaneously transmits and receives radio signals
  - The signals transmitted and received can vary by more than 100 dB.
  - The signals in each direction need to occupy bands that are separated far apart (tens of MHz)
- A device called a **duplexer** is required to filter out any interference between the two bands.



### Advantages of FDD (Bad pts for TDD)

- TDD frames need to incorporate guard periods equal to the max round trip propagation delay to avoid interference between uplink and downlink under worst-case conditions.
- There is a **time latency** created by TDD due to the fact that communications is **not** full duplex in the truest sense.
  - This latency creates inherent sensitivities to propagation delays of individual users.

#### Advantages of TDD

- Duplexer is not required.
- Enable adjustment of the downlink/uplink ratio to efficiently support asymmetric DL/UL traffic.
  - With FDD, DL and UL always have fixed and generally, equal DL and UL bandwidths.
- Assure *channel reciprocity* for better support of link adaptation, MIMO and other closed loop advanced antenna technologies.
- Ability to implement in *nonpaired spectrum* 
  - FDD requires a pair of channels
  - TDD only requires a single channel for both DL and UL providing greater flexibility for adaptation to varied global spectrum allocations.

## ECS455: Chapter 4

Multiple Access

4.2 Introduction to Multiple Access

| Parameter                   | Fixed WiMAX                                                                 | Mobile WiMAX                                                               | HSPA                                                        | 1x EV-DO<br>Rev A                             | Wi-Fi                                                        |  |
|-----------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|--|
| Standards                   | IEEE 802.16-<br>2004                                                        | IEEE 802.16e-<br>2005                                                      | 3GPP Release 6                                              | 3GPP2                                         | IEEE 802.11a/g/n                                             |  |
| Peak down<br>link data rate | 9.4Mbps in<br>3.5MHz with 3:1<br>DL-to-UL ratio<br>TDD; 6.1Mbps<br>with 1:1 | 46Mbps <sup>a</sup> with<br>3:1 DL- to-UL<br>ratio TDD;<br>32Mbps with 1:1 | 14.4Mbps using<br>all 15 codes;<br>7.2Mbps with<br>10 codes | 3.1Mbps;<br>Rev. B will<br>support<br>4.9Mbps | 54 Mbps <sup>b</sup> shared<br>using 802.11a/g;<br>more than |  |
| Peak uplink<br>data rate    | 3.3Mbps in<br>3.5MHz using 3:1<br>DL-to-UL ratio;<br>6.5Mbps with 1:1       | 7Mbps in<br>10MHz using 3:1<br>DL-to-UL ratio;<br>4Mbps using 1:1          | 1.4Mbps ini-<br>tially; 5.8Mbps<br>later                    | 1.8Mbps                                       | 100Mbps peak<br>layer 2 through-<br>put using 802.11n        |  |
| Bandwidth                   | 3.5MHz and<br>7MHz in 3.5GHz<br>band; 10MHz in<br>5.8GHz band               | 3.5MHz, 7MHz,<br>5MHz, 10MHz,<br>and 8.75MHz<br>initially                  | 5MHz                                                        | 1.25MHz                                       | 20MHz for<br>802.11a/g;<br>20/40MHz for<br>802.11n           |  |
| Modulation                  | QPSK, 16 QAM,<br>64 QAM                                                     | QPSK, 16 QAM,<br>64 QAM                                                    | QPSK,<br>16 QAM                                             | QPSK,<br>8 PSK,<br>16 QAM                     | BPSK, QPSK,<br>16 QAM,<br>64 QAM                             |  |
| Multiplexing                | TDM                                                                         | TDM/OFDMA                                                                  | TDM/CDMA                                                    | TDM/<br>CDMA                                  | CSMA                                                         |  |
| Duplexing                   | TDD, FDD                                                                    | TDD initially                                                              | FDD                                                         | FDD                                           | TDD                                                          |  |
| Frequency                   | 3.5GHz and<br>5.8GHz initially                                              | 2.3GHz, 2.5GHz,<br>and 3.5GHz<br>initially                                 | 800/900/1,800/<br>1,900/<br>2,100MHz                        | 800/900/<br>1,800/<br>1,900MHz                | 2.4GHz, 5GHz                                                 |  |
| Coverage<br>(typical)       | 3–5 miles                                                                   | < 2 miles                                                                  | 1–3 miles                                                   | 1–3 miles                                     | < 100 ft indoors;<br>< 1000 ft<br>outdoors                   |  |
| Mobility                    | Not applicable                                                              | Mid                                                                        | High                                                        | High                                          | Low                                                          |  |

#### Multiple Access Techniques

- Allow many mobile users to share simultaneously a finite amount of radio spectrum.
- For high quality communications, this must be done without severe degradation in the performance of the system.
- Important access techniques
  - we have already seen this Frequency division multiple access (FDMA)
  - Time division multiple access (TDMA)
  - Spread spectrum multiple access (SSMA)
    - Frequency Hopped Multiple Access (FHMA)
    - Code division multiple access (CDMA)
  - Space division multiple access (SDMA)
  - Random access
    - **ALOHA**



## Chapter 4

Multiple Access

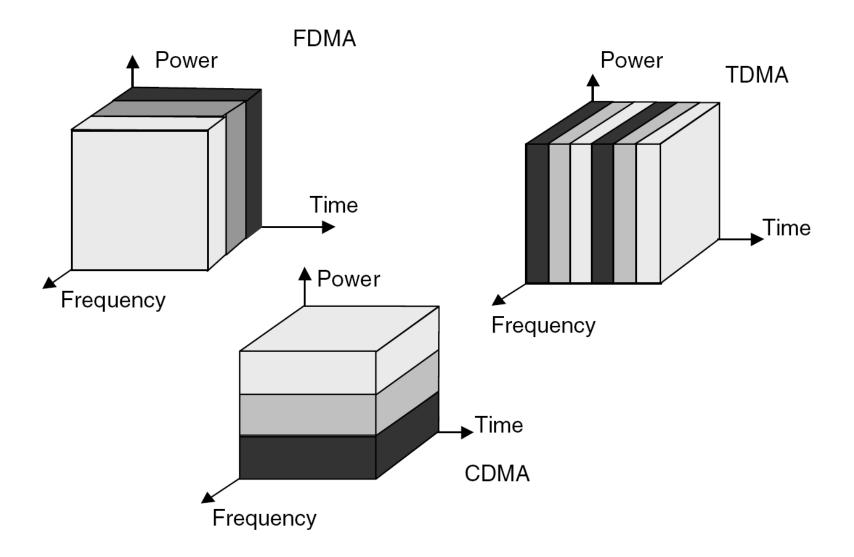
4.3 FDMA and TDMA

#### Multiple Access Techniques

- Allow many mobile users to share simultaneously a finite amount of radio spectrum.
- For high quality communications, this must be done without severe degradation in the performance of the system.
- Important access techniques
  - 1. Frequency division multiple access (FDMA)
  - 2. Time division multiple access (TDMA)
  - 3. Spread spectrum multiple access (SSMA)
    - Frequency Hopped Multiple Access (FHMA)
    - Code division multiple access (CDMA)
  - 4. Space division multiple access (SDMA)
  - 5. Random access
    - ALOHA

# Frequency division multiple access (FDMA)

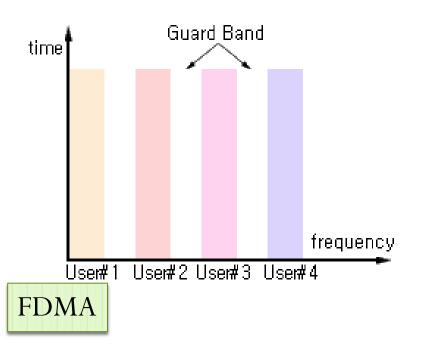
- The <u>oldest</u> multiple access scheme for wireless communications.
- Used exclusively for multiple access in 1G down to individual resource units or physical channels.
- Assign individual channels to individual users.
  - Different carrier frequency is assigned to each user so that the resulting spectra do not overlap.
  - During the period of the call, no other user can share the same channel.
- **Band-pass filtering** (or heterodyning) enables separate demodulation of each channel.

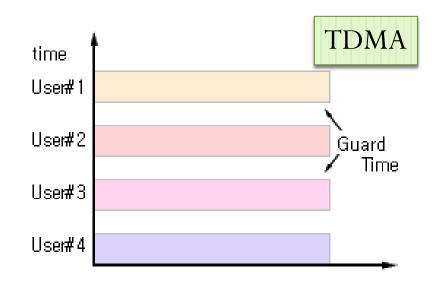

#### FDMA (2)

- If an FDMA channel is not in use, then it sits idle and cannot be used by other users to increase or share capacity.
  - It is essentially a <u>wasted resource</u>.
- In FDD systems, the users are assigned a channel as a pair of frequencies.

#### Time division multiple access (TDMA)

- Divide the radio spectrum into **time slots**.
- In each slot only one user is allowed to either transmit or receive.
- A channel may be thought of as a particular time slot that reoccurs every frame, where *N* time slots comprise a frame.
- Transmit data in a **buffer-and-burst method** 
  - The transmission for any user is non-continuous.
  - Digital data and digital modulation must be used with TDMA.
  - This results in low battery consumption, since the subscriber transmitter can be turned off when not in use (which is most of the time).
- An obvious choice in the 1980s for digital mobile communications.


#### FDMA vs. TDMA




#### **Tradeoffs**

- TDMA transmissions are slotted
  - Require the receivers to be synchronized for each data burst.
  - **Guard times** are necessary to separate users. This results in larger overheads.
  - FDMA allows completely **uncoordinated transmission** in the time domain
    - No time synchronization among users is required.
- The complexity of FDMA mobile systems is lower when compared to TDMA systems, though this is changing as digital signal processing methods improve for TDMA.
- Since FDMA is a continuous transmission scheme, fewer bits are needed for **overhead** purposes (such as synchronization and framing bits) as compared to TDMA.
- FDMA needs to use costly **bandpass filters**.
  - For TDMA, no filters are required to separate individual physical channels.

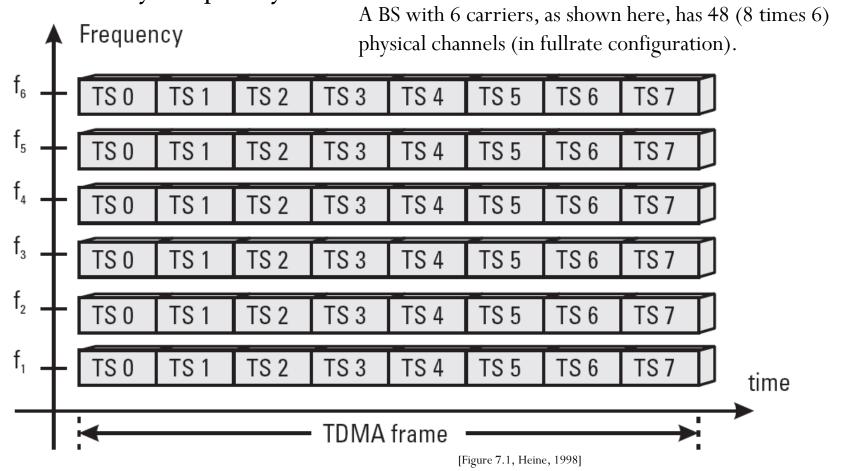
#### Guard Band vs. Guard Time





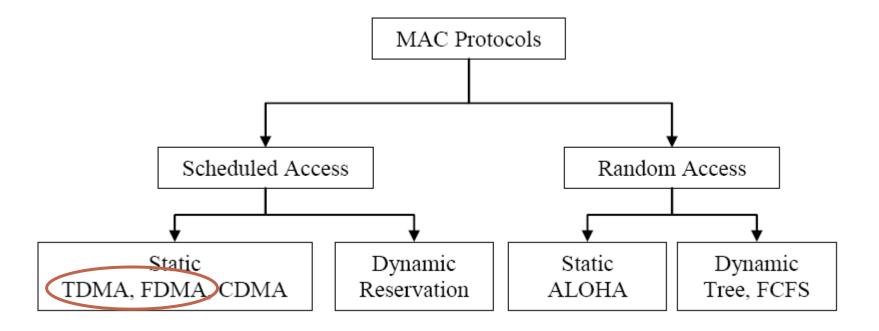


FDMA


GSM FDMA/TDMA
with one active time
slot

- GSM utilizes a combination of FDMA and TDMA
- Two-dimensional channel structure

- Each narrowband channel has bandwidth 200 kHz.
- Time is divided into slots of length  $T = 577 \mu s$ .


#### The FDMA/TDMA structure of GSM

• In full-rate configuration, eight time slots (TSs) are mapped on every frequency.



24

## Classifications of Medium Access Control (MAC)



| Cellular System                            | Multiple Access<br>Technique |  |  |
|--------------------------------------------|------------------------------|--|--|
| Advanced Mobile Phone System (AMPS)        | FDMA/FDD                     |  |  |
| Global System for Mobile (GSM)             | TDMA/FDD                     |  |  |
| US Digital Cellular (USDC)                 | TDMA/FDD                     |  |  |
| Pacific Digital Cellular (PDC)             | TDMA/FDD                     |  |  |
| CT2 (Cordless Telephone)                   | FDMA/TDD                     |  |  |
| Digital European Cordless Telephone (DECT) | FDMA/TDD                     |  |  |
| US Narrowband Spread Spectrum (IS-95)      | CDMA/FDD                     |  |  |
|                                            | CDMA/FDD                     |  |  |
| W-CDMA (3GPP)                              | CDMA/TDD                     |  |  |
|                                            | CDMA/FDD                     |  |  |
| cdma2000 (3GPP2)                           | CDMA/TDD                     |  |  |